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Statistical Computer-Aided
Design for Microwave Circuits

Jim Carroll and Kai Chang, Fellow, IEEE

Abstract-A useful methodology for microwave circuit design
is presented. A statistical technique known as Design of Ex-

periments is used in conjunction with computer-aided design

(CAD) tools to obtain simple mathematical expressions for circuit
responses. The response models can then be used to quan-
tify response trade-offs, optimize designs, and minimize circuit
variations. The use of this methodology puts the designer’s in-
telligence back into design optimization while making “designing
for circuit manufacturability” a more systematic and straightfor-

ward process. The method improves the design process, circuit
performance, and manufacturability. Two design examples are

presented in context to the new design methodology.

I. INTRODUCTION

I T IS DIFFICULT to meet the rigorous performance require-

ments that are needed in today’s competitive microwave

circuit market. The design process eventually becomes a series

of choices made by evaluating circuit performance trade-offs.

Unfortunately, the process of making these choices is more

of an art than a science due to the complex relationships

driving a circuit’s responses. The response relationships make

design trade-offs difficult to quantify and therefore are seldom

used to the designer’s advantage. Performance optimizers

compound the problem by being extremely sensitive to the

user-weighted performance objectives. Computer optimization

routines can create impossible circuit parameter combinations,

design circuit responses that are too sensitive to parameter

variations [1], or end up getting trapped in a local minimum

without reaching the optimization goals. However, a statistical

technique known as Design of Experiments (DoE) can be used

in addition to the current design process in order to make

circuit design easier and more systematic.

Design of Experiments is a well established area of sta-

tistics that is used to make deliberate changes to the input

variables of a system in order to identify differences in

the system’s output responses. Response changes can be

fitted using standard statistical regression techniques to simple

mathematical functions of the system’s input variables. The

expressions are approximations in a particular region of the

circuit’s designable parameter values and reveal important

response trends. The coefficient estimation of a regression

model fits a linear equation for a product’s response as

a function of the input variables representing a circuit’s

designable parameters. Interactions between parameters and

nonlinear terms can also included in the response model. The
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types of circuit responses that can be characterized can be

anything such as simple amplifier gain, amplifier noise figure,

or circuit input impedance. The power of this methodology

is obtaining simple empirical expressions for the product’s

response which can be used by a designer to gain insight to

the trends within some region of parameter space.

Taguchi introduced the DoE techniques to engineering for

quality improvement [2]. In the past, enhancements to the DoE

technique have been used on a production line or laboratory

to derive empirical models and optimize a given process.

This approach is called response surface methodology (RSM)

and is becoming increasingly popular in American industry.

However, the DoE technique may be incorporated within

computer-aided design (CAD) packages to give engineers a

powerful, yet simple, design tool [3]. A computer can perform

“virtual” experiments using the DoE’s systematic methodology

and produce a simple expression which will almost always

be less complex than the true physical relationships that

govern circuits. The empirical expression can then be used

to better understand the effect of design variables, either alone

or in combination, on a circuit’s response. This approach to

empirical modeling will be called statistical computer-aided

design (SCAD) in this paper. SCAD is useful in the design

environment because it can be used to quantify performance

trade-offs, perform goal optimization, and minimize circuit

variability. This combination of statistical techniques and CAD

can enable bad circuit designs to become good and good

designs to become even better.

This paper presents the use of the SCAD methodology

for microwave circuit design. The basic DoE concepts and

terms are presented to give an overview of the methodology

and to supplement other papers on the subject [4], [5]. The

intent of this research is to introduce the microwave circuit

designer to a new and beneficial way to design circuits for not

only nominal performance but for manufacturability. It should

be emphasized that this statistical design methodology is a

useful alternative, not a replacement, to the current design tools

already available to the engineer. The SCAD methodology will

be demonstrated in this chapter on two microwave amplifier

design examples.

II. DoE BACKGROUND

Many of the DoE concepts were popularized by Taguchi’s

contributions to the methodology of off-line quality design.
The basis for his approach is to minimizing the “loss to

society” that occurs when a product’s petforrnance varies from

a customer-specified target [6]. Taguchi’s ideas for pararn-
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eter and tolerance design have evolved into what industry

labels Design of Experiments for robust product design. The

DoE technique describe parameter settings that maximize the

amount of extractable information in the minimum number

of experimental runs, or computer simulations, for fitting a

regression model to a system response. This aspect is a benefit

to both physical and virtual experiments because it uses the

minimum amount of resources (time, money, or computer) to

achieve accurate modeling.

What makes the DoE approach so powerful is that all of

the significant controlling parameters are changed simultane-

ously according to predetermined levels. This is much more

effective than other nonstatistical methods used by engineers

and scientists [3] because important factor interactions can be

missed when just changing one variable at a time, In the DoE

methodology, all of the variables that can affect a product’s

performance, such as lengths, doping densities, temperatures,

or capacitance, are called factors. The values that the factors

are assigned are levels. There are designable factors which

an engineer can control to make the product perform in a

desirable way. Examples of these are a circuit’s capacitance,

transmission line length, and doping levels. Noise factors, or

sometimes called environmental factors, are those which the

designer can not control such as aging effects, temperature,

or natural processing variations in the designable component

values. One can only minimize the effect of the environmental

factors on circuit response by favorable design choices. It

should be mentioned that in the DoE approach both types

of factors must be independent, or orthogonal, to each other

such that changing one variables value does not affect any of

the others when using the DoE techniques. An experiment is

when all of the factors are assigned a particular value or level.

In a DoE, each variable would be assigned its value for the

experiment, and the outputs or responses would be recorded

for statistical analysis and model fitting. Examples of the most

useful experimental designs for SCAD modeling are full and

fractional factorial, central composite, and box-Behnken [7].

Full factorial experimental designs are those in which all

possible combinations of factor levels are used in the analysis.

Two factor levels is the most common number of factor

settings in DoE designs because you only need two points

to fit a line in a linear regression. However, a larger number

of factor levels may be used depending on the type of

DoE design, If n factors have two different level settings

there will be 2n total possible combinations of experiments.

Table I shows an example of a full factorial experiment

with the three designable variables (Xl, X2, X3) each run

at two level settings. The values of the variable levels are

coded so that the high and low level experimental settings are

denoted by +1 and – 1, respectively. The coding normalizes

all of the parameters to unitless values which has some

beneficial statistical properties [8]. Fig. 1 shows the geometric
representation of the experimental design in Table I. The

nominal point of the factors, corresponding to zero for the

coded factor level settings, is in the center and is surrounded

by the experimental level settings at each of the cube’s

comers. Hopefully, the empirical response model will allow

interpolation inside. and perhaps extrapolate a bit outside,

TABLE I
THREEFACTOR,Two LEVEL FULL FACTORIALDESIGN

Experiment Factor X1 Feetor Xj Factor X3

Number Level Level Level

1 -1 -1 -1

2 -1 -1 +1

3 -1 +1 -1

4 -1 +1 +1

5 +1 -1 -1

6 +1 -1 +1
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Fig. 1. Geometric representation of Table I experimental design.

the exploration region defined by the cube in Fig. 1” for the

example in Table I. Normally, high and low level settings for

each factor are chosen with the parameter values that need to

be interpolated in-between after the creation of the response

model. Therefore, it is extremely important for nonlinear

responses that the experimental high and low values are not

too far apart as to prevent accurate interpolation of the user

defined model. Experiments with more than three factors are

difficult to visualize geometrically but follow the same concept

presented in Fig. 1.

In the Table I example, the empirical model is built by

setting the three factors to the appropriate levels for each

experiment and recording the responses for statistical anal-

ysis. Regression techniques are then used to fit the recorded

response values to a user-defined linear model such as the one

shown in (1)

n nn

where n is total number of designable factors, ~’s are the

regression coefficients, and C,j represents the total error in

the regression model. The first term, Do, in the model is the

regression equation’s intercept. The second term represents the

main factor response effect of the ith factor. The third term in

(1) is the joint effect caused by the first order interaction of

the i by j main factors. The benefit to this type of simple
model is that it easily shows the larger response trends.

Simple linear equations do not have any local minima that

cause problems for gradient optimizers when finding the best

parameter settings. The limitation of this type of modeling

is there may be some difficulty using these equations for

noncontinuous or quickly changing responses.
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Fig. 2. Two-stage low noise amplifier topology.

Other types of models are available but the most popular

for RSM is the quadratic [9], [10]. The quadratic model

is the same as (1) except that the i # j restriction is

removed which requires the factors to have more than just two

levels settings. Unfortunately, large number of factor levels

dramatically increase the total number of experiments needed

to fit the model. Certain DoE’s have been designed such as the

central-composite and box-Behnken which work well with the

quadratic model [7]. The designer must keep in mind that the

regression fit is only a simple mathematical model and may not

have much physical significance. The model should only be

used in the small “exploration region” of parameter space that

the DoE was performed. The entire equation would probably

change significantly, particularly the interaction terms, when

the DoE was performed in another area of parameter space.

However, if the empirical model is good then it should enable

a designer to optimize their process or circuit within the

exploration region even though the model may not hold much

physical significance.

As the number of factors increase, full-factorial experi-

mental designs create prohibitively large experimental runs. It

would not be unusual to have 10 factors in a DoE which would

need 210 = 1024 total experiments. This many virtual exper-

iments can take a large amount of processing time even with

a powerful computer. Furthermore, by using an n-factor full-

factorial experiment one obtains information about all possible

factor interactions up to and including the interaction term

containing all n-factors. Typically, statisticians do not include

higher than first order interaction terms, z, . Xj, because the

effects due to higher order interactions are difficult to interpret.

Therefore, one can reduce the total number of experiments

by sacrificing some of the information about the higher order

interactions which would have typically been dropped from

the empirical model anyway. The type of experimental designs

that do not run all of the possible combinations of level settings

are called “fractional factorial” designs. These types of designs

exhibit confounding which means that two or more factor

effects can not be separated due to the lack of information. The
factors which are confounded can be selected by the user if the

experiments are carefully designed. As mentioned before, the

second and higher order interactions are usually intentionally

confounded so as to obtain a smaller number of experimental

runs. Therefore, knowing what effects are confounded is very

important. A person can determine which interactions are

confounded by examining the resolution of the experimental

design. “Resolution V“ experiments are needed for all model

factors in the quadratic form of (1) to be unconfounded with

each other. This is the type of resolution that is recommended

for response characterization in RSM. Both central-composite

and box-Behnken experimented designs are Resolution V [10].

‘J_ L=X,
. u

TABLE II
LOW-NOISE AMPLIFIER NOMINAL DESIGN VALUES AND CODING

H
Variable Nominal Value 15% (Mgh, +1) -15% (Low, -1) -

x, 973 pm 1119.0 pm 827.1 pm

X2 2139 pm 1818,2 pm 2459.9 Bm

X3 4890 ~m 5623.5 ~m 4156.5 pm

III. DoE APPLICATION—A DESIGN EXAMPLE

The previous concepts can be applied to statistical modeling

of microwave circuits. An example of the methodology has

been developed for the two-stage low-noise microwave am-

plifier shown in Fig. 2. The amplifier was designed to operate

in the 4.5 to 5.0 GHz frequency band with over 23 dB of

gain and a noise figure less than 1 dB. The input and output

match performance goals were both to have a return loss less

than –8 dB. The two FET’s used in the circuit were arbitrarily

picked to be the NEC4583 from an S-parameter database,

Fig. 2 shows the low-noise amplifier had eight designable

parameters, variables Xl through X8, that were used to adjust

the performance of the amplifier. All of the factors were 50

f2 transmission lines lengths except for X5 which was the

value of the DC blocking capacitor. Touchstone was used to

optimize the design parameters with the user-defined design

goals. The optimized parameter values just met the design

specifications and were accepted as being a valid design. These

optimized values are listed in Table II and were coded so

that they were the nominal (zero) values in a DoE analysis.

Table III shows the performance of the amplifier using the

Touchstone optimized “nominal values.” To achieve a better

performance, a SCAD DoE methodology was implemented

on the circuit to quantify the design trade-offs and design the

better performing circuits listed below the “nominal values”
case in Table III. The other cases will be discussed later.

The SCAD methodology depicted by the flow chart in Fig. 3

was applied to nominal value circuit design. All of the eight

designable variables listed in Table II were identified as the

designable factors in a DoE plan.

A full factorial experimental plan, like the one shown in

Table I, would require 28 = 256 “virtual” experiments runs. A

full-factorial design was impractical both because only the first

order interactions were desired in the response model and this

designed experiment was being performed by hand. Therefore,

higher interaction confounding was intentionally introduced

by running a Resolution V DoE which consisted of 28–2 =
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TABLE III

LOW-NOISE AMPLIFIER PERFORMANCECASES*NOMINAL VALUESOPTIMIZEDBY TOUCHSTONE

Response Case Coded Values Gain NF S,l S22

xl X2 X3 xl X5 X6 x, X8 (dB) (dB) (dB) (dB)

Nominal Values* o 0 0 0 0 0 0 0 22.96 1.02 -8.11 -10,5CI

Minimize Noise Figure o 0 0.2 1 0 1 -0.4 -1 24.92 0.65 -3.94 -6.24

Maximize Gain o 0 0 -1 -1 -1 -0.3 1 25.05 1.32 -17.94 -19.81

Met All Specifications o 0 -0.1 0 -1 0 -0.2 -0.1 23.29 0.92 -8.25 -10.35

Good LN tip o 1.5 0.1 -0.5 -1 0.5 -0,3 -1.4 23.27 0.80 -11.44 -8.58

[ 1Implement Ckcuit
in CAD Program

I A
+ T

(=)-, (Me-

Fig. 3. SCAD methodology for circuit design,

64 experimental runs. Modeling of the quadratic response

model was desired so center points were added to make the

design central composite fractional factorial. The center points

were chosen using the commercial statistical software package

SAS” interactive DoE designer which suggested a total of81

experimental runs [7]. Table II shows the DoE used high and

low values that were +1570 of the nominal values which were

coded +1 and – 1, respectively. The responses of interest for

each virtual experimental run were the gain, noise factor, S11,

and SZZ of the amplifier from 4.4 to 5.1 GHz at 0.125 GHz

steps. These values were recorded in a database for statistical

analysis.

SAS@ was used to fit the quadratic form of the (1) model for

each of the responses at the 4.75 GHz mid-frequency point [9].

The code used to perform the analysis is included in Appendix

A. A statistical measure of the regression model’s “goodness-

of-fit” is called the R-Square (R2 ) value. In this application,

R2 is the proportion of observed variability in the simulated

response that is explained by the regression model. This value

is calculated from the total amount of error in the model as

identified by (1) and is between the values of zero and one

with one indicating the statistical model fits the data with no
errors [11]. Table IV lists each response’s R2 value and shows

that all of the ‘responses are being modeled reasonably well

at the experimental design points. The R2 is an indication

of “goodness-of-fit” only at the actual factor level settings

of the experimental runs. The optimal parameter settings for

the factors are most likely not to lie at the high, low, or

TABLE IV
LOW-NOISEAMPLIFIERMODELEDRESPONSEVALUSS

~

zero factor level settings. Therefore, one is interested in the

accuracy of the statisti~al models in-between our high (+1)

and low (– 1) level settings. To do this, 20 sets of random

parameter values were picked within the limits of each of the

experimental factors and the circuit responses for each set were

recorded for both the CAD and the statistical model results.

The difference between these two values was used to determine

the amount of error in the statistical model for the random

parameter sets in what could be termed a “reality check.”

Fig. 4 shows the experimental error for all four responses when

the 20 random parameter value sets were used. It can be seen

that the models with the largest errors, the input (S11) and

output (S22 ) matches, also had the lowest R2 values shown in

Table IV. However, Fig. 4 shows that “reasonable” results can

be achieved through the rather simple quadratic models used

for the responses, If the error bounds had been unacceptable

then this would have indicated that the DoE was performed

with low and high levels that were set too far away from the

nominal values. The CAD experiments would then need to

be repeated with less variations in the factor level settings.

However, in this demonstration one is looking for a trend

analysis and very accurate predictive models are not needed.

Once the empirical model is fit using the regression tech-

niques, one can determine which factors, or combination

of factors, explain very little of the variation seen in the

response data. Those factor terms can be dropped from the

model for simplification purposes without sacrificing any

significant modeling accuracy. A statistical significance test is

performed on each term to determine which can be dropped.

In our example, the significance test of each model term was

performed using a standard two-tailed t-test at an a = 0.05

error level of significance [12]. If the experimental design is

orthogonal, then dropping the nonsignificant factor does not

change the coefficient values of the otier significant factors.
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However, the quadratic model causes the experimental design

to be nonorthogonal and the model’s significant terms have

to be refit after the nonsignificant factors are dropped. This

was the case for the responses in this particular DoE and

the regression coefficients were re-estimated with the reduced

model. An example of the equation for S11 containing only

significant factors and interactions is shown below in (2)

Sll = –7.92 + 2.75X3 .X3 + 2.64X4.X4+ 1.72X6

+ 1.04X4 + 0.62XZ. X3 – 0.45X3. (2)

Equation (2) originally had 45 terms, including the intercept,

before the nonsignificant factors were dropped leaving only

7 terms in the regression equation. Of course, the number of

significant terms varies with the actual response characteristics

and number of experimental runs but these examples show

that only a few significant factors need to be included in

the response model. Deleting nonsignificant terms is usually

only done to facilitate writing the equations or to present a

reasonable amount of information to the designer.

The most significant factor coefficients in the model for

each of the gain, noise figure, input and output match re-

sponses were ranked from largest magnitude to smallest and

displayed on the Pareto Charts in Figs. 5–7 and 8, respectively.

A Pareto Chart is a graphical ranking of the importance

of response model effects. Typically, only the statistically

significant effects are presented in the Pareto Chart which

allow the designer to easily see what influences the response

in question, Pareto Charts are commonly used by statisticians
and industrial engineers. Referring to (2), one can see each

of the significant factor coefficients for the amplifier’s input

match S11 are shown in the Pareto Chart in Fig. 7. Negative

coefficients are shown with a dot in the factor’s graph bar.

The Pareto Charts visually present the circuit’s design trade-

offs by showing the relative magnitudes of the most significant

factors. Ranking the model coefficients from largest to smallest

lets the designer see which factors, or combination of factors,

account for the most variation in that response. For example,

Fig. 5 shows that the interaction between the two transmission

line lengths in the matching interstage (X4 ~X6) has the

greatest affect on the amplifier gain. One can also see that the

11—

-. -—

● ✌ ● ✌ ● ● ● r
X3*X3’X7*X7’ X5 ‘X2*X3’X5”X6’X4’X5’ X4 ‘X79X6’ X3

Factors

Fig. 5. Pareto of two-stage amplifier gain.

o = Negative Coemcient

r--l

Factors

Fig. 6. Pareto of two-stage amplifier noise figure,

input matching network’s transmission line length X3 has the

smallest significant effect on the amplifier gain. It can easily be

seen from the Pareto charts that the transmission line length

Xl does not significantly influence any of the responses as

would be expected. Therefore, X1 can be totally ignored in

the subsequent analysis and optimization within this volume

of design space.

The Fig. 5 Pareto Chart lets the designer visualize that if

both the Factor X4 and X6 line lengths were increased to

the +1 and +1 factor level settings, then gain of the entire

amplifier will also increase because the X4. X6 coefficient

is positive. If one of the factors was increased while the
other was decreased (that is, one at +1 the other at – 1

causing X4 . Xfj to be – 1) then the amplifier gain would

tend to decrease due to the positive interaction coefficient.

Comparing each of the Pareto charts to each other leads

directly to trade-off conclusions. For example, X4 is shown

to be the only main effect factor that affects all the responses

significantly. Referring to Fig. 6, decreasing the noise figure

(desirable) of circuit in Fig. 2 by making the X4 factor

lower will also decrease gain (undesirable), S1l and S22

(desirable). The designer can optimize the amplifier by hand

choosing the designable parameter values which give the most

desirable trade-offs. Once the designer changes the designable
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parameters, the design can be restimulated and the performance

evaluated. Often, this process would have to be iterated until

the design meets the response specifications as shown in the

Fig. 3 SCAD methodology flowchart.

The amplifier in Fig. 2 was optimized by hand using the

Pareto Charts for several different single frequency perfor-

mance goals to show the versatility of the SCAD methodology.

Each of these performance cases are detailed in Table III

along with the coded parameter and performance values. The

first two optimization cases, “minimize noise figure” and

“maximize gain,” used only their respective Pareto Chart

to optimize their response regardless of the expense of the

other circuit responses. The coded values shown in Table III

indicate the designer has tremendous flexibility in optimizing

the design using the SCAD methodology. Minimizing or

maximizing a response is aided by the fact that the designer

has an second order equation for a response which can be

easily minimized with respect to a particular variable. Fig. 6

shows an example of this for the amplifier’s noise figure which

is minimized when X7 is set to –0.4 level because both X7

and X7. X7 factors are significant.

Both “Met All Specifications” and “Good LN Amp” in

Table III were optimized by looking at all of the response

Pareto charts in order to evaluate the performance trade-offs.

Both cases were obtained only through hand tuning with

only the Pareto charts supplying the needed “roadmap” to

find optimal parameter configurations. “Met Specifications” in

Table III used parameter values which were kept within the

+15% bounds (– 1 to +1) that the DoE had been performed.

However, the “Good LN Amp” case shows that values far

outside this range, such as X2 and X8, may provide useful

optimization points because the general response trends may

continue even when the regression models lose accuracy [13].

Finding optimum parameter points may be helped by using

linear and nonlinear programming techniques for this type

of multiple constrained optimization problem [12]. Taguchi

advocated a “pick the winner” scheme of optimization by

looking for the experimental run that gives most desirable

responses [2]. However, it is not probable that one of the

planned experiments would happen to set the circuit’s des-

ignable parameters at their globally optimum values and this

method should not be normally used for optimization.

IV, VARIABILITY REDUCTION

Perhaps the most exciting application of the SCAD method-

ology is for reduction of circuit response variability. All

circuits that are produced have some inherent variability in

them. Large circuit variation tends to cause high yield losses.

Response variability is due to two types of factors: des-

ignable factor variation and environmental noise. The effect

of designable parameter variation is easily seen by the Pareto

charts. Fig. 8 shows that low noise amplifier output match is

much more sensitive to the Xq designable parameter than the

X5 factor. Therefore, if the length XL was to vary a small

percentage while the circuit was being produced, that would

effect the S22 response more than if the length factor X5 were

to vary that same percentage. One can see it is in the designer’s

best interest to reduce the fabrication length variations of the

X4 factor more so than the X5 factor’s length variations. A

designer can minimize this propagation of production variation

to the circuit responses by using the DoE approach to identify,

or screen, the most sensitive parameters and focus effort on

controlling their variability [14].

The second type of circuit variability is due to environmen-

tal, or “noise,” variables such as changes in bias voltages,

small signal FET parameters, temperature, or aging. CAD

packages can simulate the effect of these variables. The

variability due to these parameters can then be minimized

by choosing designable parameter settings that cause the

circuit to be least sensitive to these noise variables. Often,

the designer cannot totally minimize the response variability

without miscentering the design. Taguchi described a method

of achieving this type of robust circuit design through the use

of inner and outer array DoE’s [6]. The inner array is the

designable factor DoE plan such as the one discussed in the

previous section and shown in Table I. The outer array is a

separate designed experiment using only the noise variables.

When replications are made in actual measurements for a

system’s particular level settings, the response will not be

the same due to measurement error and slightly changing
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Outer Noise Array

Ianer Designable Array -1 -l]+ll+l\l@l

Y1 Y~ -11+11 -ll+lll@2

-1 -1 Yll Y12 Y13 Y14

-1 +1 Y21 Y22 Y23 Y24

+1 -1 Y31 Y32 Y33 Y34

+1 +1 Y41 Y42 Y43 Y44

Fig. 9. Inner and outer array DoE V n designable (outer array) factor, 6’.
noise (inner array) factor, and responses Y,J.

environmental conditions. In CAD virtual experiments, re-

running the same level settings always will give the same

response. Therefore, circuit variation must be introduced by

using the outer array experiment set as replications of each

of the designable parameter array’s experiments. Fig. 9 shows

an example of an experiment with two designable factor array

variables (Vi ) being replicated with a full factorial array of

two noise factors (@J). The replications across each row will

force variability of the response variables for each set of

designable factor settings (r,). The variability can be modeled

and then minimized by using the designable parameter factors.

Any number of noise factors can be used in the outer array.

It should be mentioned that the outer array design can be a

fractional factorial because the noise variables are not used as

a predictor in the regression model equations. However, large

numbers of noise factors can create prohibitively large outer

arrays even when highly fractionated factorial designs are

used. In these cases, using random permutations to obtain the

noise array is suggested. This is equivalent to using the Monte

Carlo method to induce variations due to random noise factors

in the design. This approach models the true environmental

noise more accurately than the method of selecting the noise

factor levels. However, to guarantee that the entire noise

parameter space is covered, a large number of Monte Carlo

level combinations must be made [15]. A SCAD methodology

user can use specific noise level settings in order to run fewer

total number of virtual experiment simulations when only a

small number of noise parameters are being studied. Either

approach should give equivalent comparisons of the response

variance.

An example of variance reduction will be performed on

the single stage amplifier shown in Fig. 10. A circuit with a

small number of designable factors was chosen to keep the

number of required simulations low. The environmental noise

factor chosen was the amplifier’s input impedance termination.

The amplifier’s gain will be affected as the terminating input

impedance is changed from the 500 source impedance that

was used during the nominal design. It would be desir-

able to make the amplifier performance insensitive to these

variations in the source impedance. DoE provides an easy

way to characterize and then minimize this sensitivity. The

single-stage amplifier was designed using the microwave CAD

simulator Touchstone@ with lumped inductors to achieve 50

Q terminations on both the input and output ports. Afterward,

a Taguchi inner noise array was constructed using the four

inductor values in a Resolution V Box-Behnken DoE, Ta-

ble V shows the inductance values and their high and low

TABLE V
SINGLESTAGEAMPLIFIERNOMINALDESIGNVALUESAND CODING

Variable Nominal Value 8% (Wgh, +1) -8% (Low, -1)

L1 5.48 aH 5.92 nH 5.04 nH

HL2 11.46nH 12.38UH 10.54nH

L3 14,94aH 16.14nH 13.75rdf

T.4 0.22 nH 0.24 rrH 0.20 nH

TABLE VI
INPUTMATCHTERMINATINGIMPEDANCESFORTAGUCHIOUTERARRAY

Resistance (Coding) Reactance (Coding) Mag(r) Ang(r)

50 (NOminaf,o) O(NOminrd,O) o 0

25 (Low,-1) -25 (Low,-1) 0.447 -111.7”

25 @,ow,-1) 25 (High,+l) 0.447 111.7”

75 (High,+l) -25 (Low, -1) 0.277 -33.7”

75 (Highj+l) 25 (Hlgh,+l) 0.277 33.7”

L4

‘“w
Fig. 10. Single stage amplifier for variance reduction example.

values set at 89Z0of nominal values in order to get high

modeling accuracy. The noise factor array consisted in the

termination of the amplifier’s input with the five different

types of impedances shown in Table VI. Touchstone@ defines

terminating impedances matches in terms of magnitude and

phase of the termination’s reflection coefficient, with respect

to a characteristic impedance of 500 [16]. The terminating

impedances were picked for perfect match and four different

quadrants of the Smith chart. The outer noise array consisted

of placing each termination on the amplifier’s input and

calculating the amplifier’s gain for each experiment level

setting of the inner array.

After the DoE was run, a regression model was used on

the gain variance introduced by the different terminations.

Equation (3) shows the resulting expression for the gain’s

variation (dB) with significance of the coefficients determined

at an a = 0.05 level

~gain = 0.96+ 0.328L1 + 0.081L2 + ().232L.3 + 0.024L4

– 0.083LI ~LI – 0.062LI . Lt + 0.022L1 . L3

+ 0.024L1 ~L4. (3)

The Pareto Chart of the variance equation’s ranked coefficients

is shown in Fig. 11 while a Pareto Chart of the amplifier’s

average gain is in Fig. 12. The regressions models for the gain

and gain variance had an R2 of 0.99 and 0.96, respectively. At

the nominal design point (all inductance codings set to zero),

the gain was 16.9 dB with a standard deviation of 0.96 dB.

Equation (3) and the Pareto chart in Fig. 11 show the total

gain variance can be reduced by picking all of the designable

parameters at their coded low (-1) values. The amplifier’s

average gain Pareto Chart in Fig. 12 indicates that picking
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Fig.

o

11. Single stage amplifier gain variance Pareto Chart accounting
input termination v~labili;y.

[ ●
✌✎

o = Negative CoeiIcient

+

l-------------------------‘----------- ‘------

1● ●

L1 L2
IIII=i

L1’LI LI”L2 L1”L3 LI’L4
Factor

for

Fig. 12. Single stage amplifier average gain Pareto Chart accounting for

input termination variability.

all of the factors at their low (-1) will also tend to increase

the gain which is a favorable trade-off. With the new all low

designable level settings, the amplifier gain was 17.4 dB, a

0.5 dB increase, while the standard deviation of the gain with

respect to the noise variables was reduced 58% to 0.41 dB.

This shows that the “by-hand” optimization can both increase

nominal value while decreasing the variance of the circuit gain

in a straightforward manner.

Another noise factor which affects the amplifier response

is active device variations. DoE factors must be orthogonal

so the principal component method was chosen to introduce

physically realizable FET variations into the DoE noise array

[17]. The FET model parameters were varied by changing the

first two principal components in the FET model methodology

which corresponded to 86% of the total variation in the small

signal FET parameters. Picking only some of the principle

components enables the outer array to have fewer factors and

require a smaller amount of experimental runs. The same inner

array DoE as the previous variation model was run for this set

of virtual experiments. This resulted in the standard deviation

model (in dB) in the following (4) and illustrated in the Pareto

Chart shown in Fig. 13 for an a = 0.05 level of significance.

The R2 of (4) was 0.99

again = 1.283+ 0.489LI + 0.162L2 + 0.022LA

– 0.063L1 . L1 – 0.019L1 . L3. (4)

The model and Pareto chart indicate that setting all of the

0.7
● = NegativeCoefficient

Factors

Fig. 13. Single stage amplifier gain variability IPareto Chart accounting for
intrinsic FET variability.

factors at their coded low level (– 1) will reduce the variations

in the circuit’s gain response. Coincidentally, these are the

same results as were shown when the input termination was

used as the noise parameter. Apparently, those settings for

the designable parameters create a circuit robust to a variety

of environmental factor variations. Also, this example shows

that designing a more robust circuit does not always mean

sacrificing performance. The principal factor outer array could

have been combined with the input termination array, and

others, to form one standard deviation model for the amplifier

gain but this was not done for example clarity.

V. DISCUSSION OF RESULTS

It can be seen that the SCAD modeling methodology gives

a reasonably straightforward and systematic way to optimize

circuits. There is an effort to integrate these tools directly

into the microwave CAD packages so the experimental design,

response modeling, and Pareto charts do not have to be done

by hand [4], [18]. Currently, these tools use a goal oriented

approach with Taguchi loss functions which is slightly differ-

ent from the approach discussed here. This dissertation shows

that minimizing variance in microwave circuit responses is a

very exciting area of the SCAD methodology. Robust circuits

can be produced in a straightforward manner through the use

of the new type of variation introduction and quantification.

Other types of responses such as gain ripple, efficiency, or

third-order intercept could be modeledl and optimized using

the SCAD modeling methodology. However, these types of

circuit responses are more complex than circuit gain or input

match. Our own research into yield modeling has shown that

yield response surface is too complex to be modeled with

the simple linear regression models advocated in the paper.

Modeling over frequency also seems to be SCAD modeling

issue that needs to be addressed by future research.

DoE response modeling can also be easily combined with

more complex statistical models for predictive circuit response

models in a particular region of parameter space. This ap-

proach is similar to macro-modeling which has been used

to model certain circuits which have slow simulation times

[19], [20]. Macro-modeling with SCAD could be implemented
for circuits requiring harmonic balance simulations or electro-

magnetic field solvers. The required experimental simulations
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could be done overnight when the computer time is not

normally used. The statistical macro-models then could be

used, within some bounds of the parameter values, to achieve

much faster optimization or design tuning of a circuit. This

is especially useful to numerical methods requiring meshing

because the empirical response equations will give results that

can be interpolated in between mesh points.

VI. CONCLUSION

A new methodology has been demonstrated for microwave

circuit design. The approach uses a combination of statistical

experimental design and CAD, called SCAD, and enables a

designer to statistically characterize circuit response in a very

systematic way. Design trade-offs can be quantified with the

simple surface response models from the “virtual” experiments

performed by the CAD package. Variation minimization of a

circuit’s response due to noise parameters inherent in circuits

can be achieved with this type of methodology which enables

a designer to create robust circuits. The SCAD methodology

has been demonstrated on two different amplifier designs each

with varying types of designable parameters and optimization

goals. Different types of designed experiments were used to

show the flexibility of the approach. The introduction of two

types of variation noise parameters that are well suited for

SCAD, circuit terminations and FET principal components,

were also discussed. The SCAD methodology will prove to be

an invaluable design tool for a designer making better, more

robust circuits that exhibit higher yields.
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