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Statistical Computer-Aided
Design for Microwave Circuits

Jim Carroll and Kai Chang, Fellow, IEEE

Abstract—A useful methodology for microwave circuit design
is presented. A statistical technique known as Design of Ex-
periments is used in conjunction with computer-aided design
(CAD) tools to obtain simple mathematical expressions for circuit
responses. The response models can then be used to quan-
tify response trade-offs, optimize designs, and minimize circuit
variations. The use of this methodology puts the designer’s in-
telligence back into design optimization while making “designing
for circuit manufacturability” a more systematic and straightfor-
ward process. The method improves the design process, circuit
performance, and manufacturability. Two design examples are
presented in context to the new design methodology.

I. INTRODUCTION

T IS DIFFICULT to meet the rigorous performance require-

ments that are needed in today’s competitive microwave
circuit market. The design process eventually becomes a series
of choices made by evaluating circuit performance trade-offs.
Unfortunately, the process of making these choices is more
of an art than a science due to the complex relationships
driving a circuit’s responses. The response relationships make
design trade-offs difficult to quantify and therefore are seldom
used to the designer’s advantage. Performance optimizers
compound the problem by being extremely sensitive to the
user-weighted performance objectives. Computer optimization
routines can create impossible circuit parameter combinations,
design circuit responses that are too sensitive to parameter
variations [1], or end up getting trapped in a local minimum
without reaching the optimization goals. However, a statistical
technique known as Design of Experiments (DoE) can be used
in addition to the current design process in order to make
circuit design easier and more systematic.

Design of Experiments is a well established area of sta-
tistics that is used to make deliberate changes to the input
variables of a system in order to identify differences in
the system’s output responses. Response changes can be
fitted using standard statistical regression techniques to simple
mathematical functions of the system’s input variables. The
expressions are approximations in a particular region of the
circuit’s designable parameter values and reveal important
response trends. The coefficient estimation of a regression
model fits a linear equation for a product’s response as
a function of the input variables representing a circuit’s
designable parameters. Interactions between parameters and
nonlinear terms can also included in the response model. The
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types of circuit responses that can be characterized can be
anything such as simple amplifier gain, amplifier noise figure,
or circuit input impedance. The power of this methodology
is obtaining simple empirical expressions for the product’s
response which can be used by a designer to gain insight to
the trends within some region of parameter space.

Taguchi introduced the DoE techniques to engineering for
quality improvement [2]. In the past, enhancements to the DoE
technique have been used on a production line or laboratory
to derive empirical models and optimize a given process.
This approach is called response surface methodology (RSM)
and is becoming increasingly popular in American industry.
However, the DoE technique may be incorporated within
computer-aided design (CAD) packages to give engineers a
powerful, yet simple, design tool [3]. A computer can perform
“virtual” experiments using the DoE’s systematic methodology
and produce a simple expression which will almost always
be less complex than the true physical relationships that
govern circuits. The empirical expression can then be used
to better understand the effect of design variables, either alone
or in combination, on a circuit’s response. This approach to
empirical modeling will be called statistical computer-aided
design (SCAD) in this paper. SCAD is useful in the design
environment because it can be used to quantify performance
trade-offs, perform goal optimization, and minimize circuit
variability. This combination of statistical techniques and CAD
can enable bad circuit designs to become good and good
designs to become even better.

This paper presents the use of the SCAD methodology
for microwave circuit design. The basic DoE concepts and
terms are presented to give an overview of the methodology
and to supplement other papers on the subject [4], [5]. The
intent of this research is to introduce the microwave circuit
designer to a new and beneficial way to design circuits for not
only nominal performance but for manufacturability. It should
be emphasized that this statistical design methodology is a
useful alternative, not a replacement, to the current design tools
already available to the engineer. The SCAD methodology will
be demonstrated in this chapter on two microwave amplifier
design examples.

II. DoE BACKGROUND

Many of the DoE concepts were popularized by Taguchi’s
contributions to the methodology of off-line quality design.
The basis for his approach is to minimizing the “loss to
society” that occurs when a product’s performance varies from
a customer-specified target [6]. Taguchi’s ideas for param-
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eter and tolerance design have evolved into what industry
labels Design of Experiments for robust product design. The
DoE technique describe parameter settings that maximize the
amount of extractable information in the minimum number
of experimental runs, or computer simulations, for fitting a
regression model to a system response. This aspect is a benefit
to both physical and virtual experiments because it uses the
minimum amount of resources (time, money, or computer) to
achieve accurate modeling.

What makes the DoE approach so powerful is that all of
the significant controlling parameters are changed simultane-
ously according to predetermined levels. This is much more
effective than other nonstatistical methods used by engineers
and scientists [3] because important factor interactions can be
missed when just changing one variable at a time. In the DoE
methodology, all of the variables that can affect a product’s
performance, such as lengths, doping densities, temperatures,
or capacitance, are called factors. The values that the factors
are assigned are levels. There are designable factors which
an engineer can control to make the product perform in a
desirable way. Examples of these are a circuit’s capacitance,
transmission line length, and doping levels. Noise factors, or
sometimes called environmental factors, are those which the
designer can not control such as aging effects, temperature,
or natural processing variations in the designable component
values. One can only minimize the effect of the environmental
factors on circuit response by favorable design choices. It
should be mentioned that in the DoE approach both types
of factors must be independent, or orthogonal, to each other
such that changing one variables value does not affect any of
the others when using the DoE techniques. An experiment is
when all of the factors are assigned a particular value or level.
In a DoE, each variable would be assigned its value for the
experiment, and the outputs or responses would be recorded
for statistical analysis and model fitting. Examples of the most
useful experimental designs for SCAD modeling are full and
fractional factorial, central composite, and box-Behnken [7].

Full factorial experimental designs are those in which all
possible combinations of factor levels are used in the analysis.
Two factor levels is the most common number of factor
settings in DoE designs because you only need two points
to fit a line in a linear regression. However, a larger number
of factor levels may be used depending on the type of
DoE design. If n factors have two different level settings
there will be 2™ total possible combinations of experiments.
Table I shows an example of a full factorial experiment
with the three designable variables (X3, X3, X3) each run
at two level settings. The values of the variable levels are
coded so that the high and low level experimental settings are
denoted by +1 and —1, respectively. The coding normalizes
all of the parameters to unitless values which has some
beneficial statistical properties [8]. Fig. 1 shows the geometric
representation of the experimental design in Table I. The
nominal point of the factors, corresponding to zero for the
coded factor level settings, is in the center and is surrounded
by the experimental level settings at each of the cube’s
corners. Hopefully, the empirical response model will allow
interpolation inside, and perhaps extrapolate a bit outside,

TABLE [
THREE FACTOR, Two LEVEL FULL FACTORIAL DESIGN
Experiment Factor X, Factor X, Factor X,
Number Level Level Level

1 -1 -1 -1

2 -1 -1 +1

3 -1 +1 -1

4 -1 +1 +1

5 +1 -1 -1

6 +1 -1 +1

7 +1 +1 -1

8 +1 +1 +1
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Fig. 1. Geometric representation of Table I experimental design.

the exploration region defined by the cube in Fig. 1 for the
example in Table I. Normally, high and low level settings for
each factor are chosen with the parameter values that need to
be interpolated in-between after the creation of the response
model. Therefore, it is extremely important for nonlinear
responses that the experimental high and low values are not
too far apart as to prevent accurate interpolation of the user
defined model. Experiments with more than three factors are
difficult to visualize geometrically but follow the same concept
presented in Fig. 1.

In the Table I example, the empirical model is built by
setting the three factors to the appropriate levels for each
experiment and recording the responses for statistical anal-
ysis. Regression techniques are then used to fit the recorded
response values to a user-defined linear model such as the one
shown in (1)

y=PBo+ > Biwi+ Y, Y Byzaj+ey i#j (1)
i=1

1=1 j=1

where n is total number of designable factors, 3’s are the
regression coefficients, and ¢,, represents the total error in
the regression model. The first term, Gy, in the model is the
regression equation’s intercept. The second term represents the
main factor response effect of the ith factor. The third term in
(1) is the joint effect caused by the first order interaction of
the ¢ by j main factors. The benefit to this type of simple
model is that it easily shows the larger response trends.
Simple linear equations do not have any local minima that
cause problems for gradient optimizers when finding the best
parameter settings. The limitation of this type of modeling
is there may be some difficulty using these equations for
noncontinuous or quickly changing responses.
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Fig. 2. Two-stage low noise amplifier topology.
Other types of models are available but the most popular TABLE TI

for RSM is the quadratic [9], [10]. The quadratic model
is the same as (1) except that the i # j restriction is
removed which requires the factors to have more than just two
levels settings. Unfortunately, large number of factor levels
dramatically increase the total number of experiments needed
to fit the model. Certain DoE’s have been designed such as the
central-composite and box-Behnken which work well with the
quadratic model [7]. The designer must keep in mind that the
regression fit is only a simple mathematical model and may not
have much physical significance. The model should only be
used in the small “exploration region” of parameter space that
the DoE was performed. The entire equation would probably
change significantly, particularly the interaction terms, when
the DoE was performed in another area of parameter space.
However, if the empirical model is good then it should enable
a designer to optimize their process or circuit within the
exploration region even though the model may not hold much
physical significance.

As the number of factors increase, full-factorial experi-
mental designs create prohibitively large experimental runs. It
would not be unusual to have 10 factors in a DoE which would
need 2'0 = 1024 total experiments. This many virtual exper-
iments can take a large amount of processing time even with
a powerful computer. Furthermore, by using an n-factor full-
factorial experiment one obtains information about all possible
factor interactions up to and including the interaction term
containing all n-factors. Typically, statisticians do not include
higher than first order interaction terms, z, -z, because the
effects due to higher order interactions are difficult to interpret.
Therefore, one can reduce the total number of experiments
by sacrificing some of the information about the higher order
interactions which would have typically been dropped from
the empirical model anyway. The type of experimental designs
that do not run all of the possible combinations of level settings
are called “fractional factorial” designs. These types of designs
exhibit confounding which means that two or more factor
effects can not be separated due to the lack of information. The
factors which are confounded can be selected by the user if the
experiments are carefully designed. As mentioned before, the
second and higher order interactions are usually intentionally
confounded so as to obtain a smaller number of experimental
runs. Therefore, knowing what effects are confounded is very
important. A person can determine which interactions are
confounded by examining the resolution of the experimental
design. “Resolution V” experiments are needed for all model
factors in the quadratic form of (1) to be unconfounded with
each other. This is the type of resolution that is recommended
for response characterization in RSM. Both central-composite
and box-Behnken experimental designs are Resolution V [10].

Low-NoISE AMPLIFIER NOMINAL DESIGN VALUES AND CODING

Variable | Nominal Value

15% (High, +1) | -15% (Low, -1)

X, 973 pm 1119.0 um §27.1 um
X, 2139 pm 1818.2 uym 2459.9 um
X5 4890 um 5623.5 pm 4156.5 pm
X4 6879 pm 5847.2 um 7910.8 um
Xs 0.9609 pF 1.105 pF 0.817 pF

X 6498 um 7472.7 ym 5523.3 um
X, 6099 pm 7013.89 pm 5184.2 pm
Xz 1391 pm 1599.7 pm 1182.4 um

III. DoE APPLICATION—A DESIGN EXAMPLE

The previous concepts can be applied to statistical modeling
of microwave circuits. An example of the methodology has
been developed for the two-stage low-noise microwave am-
plifier shown in Fig. 2. The amplifier was designed to operate
in the 4.5 to 5.0 GHz frequency band with over 23 dB of
gain and a noise figure less than 1 dB. The input and output
match performance goals were both to have a return loss less
than —8 dB. The two FET’s used in the circuit were arbitrarily
picked to be the NEC4583 from an S-parameter database.

Fig. 2 shows the low-noise amplifier had eight designable
parameters, variables X; through Xg, that were used to adjust
the performance of the amplifier. All of the factors were 50
Q transmission lines lengths except for X5 which was the
value of the DC blocking capacitor. Touchstone was used to
optimize the design parameters with the user-defined design
goals. The optimized parameter values just met the design
specifications and were accepted as being a valid design. These
optimized values are listed in Table II and were coded so
that they were the nominal (zero) values in a DoE analysis.
Table III shows the performance of the amplifier using the
Touchstone optimized “nominal values.” To achieve a better
performance, a SCAD DoE methodology was implemented
on the circuit to quantify the design trade-offs and design the
better performing circuits listed below the ‘“nominal values”
case in Table III. The other cases will be discussed later.
The SCAD methodology depicted by the flow chart in Fig. 3
was applied to nominal value circuit design. All of the eight
designable variables listed in Table II were identified as the
designable factors in a DoE plan.

A full factorial experimental plan, like the one shown in
Table I, would require 28 = 256 “virtual” experiments runs. A
full-factorial design was impractical both because only the first
order interactions were desired in the response model and this
designed experiment was being performed by hand. Therefore,
higher interaction confounding was intentionally introduced
by running a Resolution V DoE which consisted of 2872 =
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TABLE III
Low-NOISE AMPLIFIER PERFORMANCE CASES *NOMINAL VALUES OPTIMIZED BY TOUCHSTONE
Response Case Coded Values Gain | NF S Sy
Xi [ Xo | X3 | Xy | Xs [ X6 | Xy [ X5 | (dB) | (dB) | (dB) | (dB)
Nominal Values* 01]0]010}0{0]0(|0]229 | 102 | -8.11 |-10.50
Minimize Noise Figure | 0 | 0 |02} 1 | 0 [ 1 [-04)-1]2492 ! 0.65 | -394 | -6.24
Maximize Gain 0(0]07}-1]-1]-11-03]11]2505] 132 |-1794]-19.81
Met All Specifications | 0 | 0 |-0.1| 0 [ -1 | 0 {-0.2[-0.1| 2329 | 092 | -8.25 | -10.35
Good LN Amp 0 [1.5{0.1]-05] -1 10.5}-03|-1.4[ 2327 | 0.80 | -11.44 | -8.58
e TABLE IV
Iir:%irge;:;lrracﬂt Low-NoOISE AMPLIFIER MODELED RESPONSE VALUES
¥ e Response R?
Identify Designable N
and Noise Factors T Yes Gain 0.886
v N Noise Figure 0.803
Design an 0 X
Experimental Plan SpeCIﬁ?C ations S11 0.695
I ¥ Sy 0.684

Perform Virtual implement New
Experiments Nominal Values

v t

Statistical Optimize Circuit /
Analysis > | Minimize Variability

Fig. 3. SCAD methodology for circuit design.

64 experimental runs. Modeling of the quadratic response
model was desired so center points were added to make the
design central composite fractional factorial. The center points
were chosen using the commercial statistical software package
SAS® interactive DoE designer which suggested a total of 81
experimental runs [7]. Table I shows the DoE used high and
low values that were £15% of the nominal values which were
coded +1 and —1, respectively. The responses of interest for
each virtual experimental run were the gain, noise factor, 511,
and S22 of the amplifier from 4.4 to 5.1 GHz at 0.125 GHz
steps. These values were recorded in a database for statistical
analysis.

SAS® was used to fit the quadratic form of the (1) model for
each of the responses at the 4.75 GHz mid-frequency point [9].
The code used to perform the analysis is included in Appendix
A. A statistical measure of the regression model’s “goodness-
of-fit” is called the R-Square (R?) value. In this application,
R? is the proportion of observed variability in the simulated
response that is explained by the regression model. This value
is calculated from the total amount of error in the model as
identified by (1) and is between the values of zero and one
with one indicating the statistical model fits the data with no
errors [11]. Table IV lists each response’s R? value and shows
that all of the responses are being modeled reasonably well
at the experimental design points. The R? is an indication
of “goodness-of-fit” only at the actual factor level settings
of the experimental runs. The optimal parameter settings for
the factors are most likely not to lie at the high, low, or

zero factor level settings. Therefore, one is interested in the
accuracy of the statistical models in-between our high (+1)
and low (—1) level settings. To do this, 20 sets of random
parameter values were picked within the limits of each of the
experimental factors and the circuit responses for each set were
recorded for both the CAD and the statistical model results.
The difference between these two values was used to determine
the amount of error in the statistical model for the random
parameter sets in what could be termed a “reality check.”
Fig. 4 shows the experimental error for all four responses when
the 20 random parameter value sets were used. It can be seen
that the models with the largest errors, the input (S;1) and
output (S2) matches, aiso had the lowest R? values shown in
Table IV. However, Fig. 4 shows that “reasonable” results can
be achieved through the rather simple quadratic models used
for the responses. If the error bounds had been unacceptable
then this would have indicated that the DoE was performed
with low and high levels that were set too far away from the
nominal values. The CAD experiments would then need to
be repeated with less variations in the factor level settings.
However, in this demonstration one is looking for a trend
analysis and very accurate predictive models are not needed.

Once the empirical model is fit using the regression tech-
niques, one can determine which factors, or combination
of factors, explain very little of the variation seen in the
response data. Those factor terms can be dropped from the
model for simplification purposes without sacrificing any
significant modeling accuracy. A statistical significance test is
performed on each term to determine which can be dropped.
In our example, the significance test of each model term was
performed using a standard two-tailed ¢-test at an o = 0.05
error level of significance [12]. If the experimental design is
orthogonal, then dropping the nonsignificant factor does not
change the coefficient values of the other significant factors.
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Fig. 4. Model error from random factor settings.

However, the quadratic model causes the experimental design
to be nonorthogonal and the model’s significant terms have
to be refit after the nonsignificant factors are dropped. This
was the case for the responses in this particular DoE and
the regression coefficients were re-estimated with the reduced
model. An example of the equation for S1; containing only
significant factors and interactions is shown below in (2)

S11 = =7924275X3-X3+2.64X,- X4+ 1.72X¢
+ 104X, + 0.62X5 - X35 — 045X, @)

Equation (2) originally had 45 terms, including the intercept,
before the nonsignificant factors were dropped leaving only
7 terms in the regression equation. Of course, the number of
significant terms varies with the actual response characteristics
and number of experimental runs but these examples show
that only a few significant factors need to be included in
the response model. Deleting nonsignificant terms is usually
only done to facilitate writing the equations or to present a
reasonable amount of information to the designer.

The most significant factor coefficients in the model for
each of the gain, noise figure, input and output match re-
sponses were ranked from largest magnitude to smallest and
displayed on the Pareto Charts in Figs. 5-7 and 8, respectively.
A Pareto Chart is a graphical ranking of the importance
of response model effects. Typically, only the statistically
significant effects are presented in the Pareto Chart which
allow the designer to easily see what influences the response
in question. Pareto Charts are commonly used by statisticians
and industrial engineers. Referring to (2), one can see each
of the significant factor coefficients for the amplifier’s input
match S1; are shown in the Pareto Chart in Fig. 7. Negative
coefficients are shown with a dot in the factor’s graph bar.
The Pareto Charts visually present the circuit’s design trade-
offs by showing the relative magnitudes of the most significant
factors. Ranking the model coefficients from largest to smallest
lets the designer see which factors, or combination of factors,
account for the most variation in that response. For example,
Fig. 5 shows that the interaction between the two transmission
line lengths in the matching interstage (X,- Xg) has the
greatest affect on the amplifier gain. One can also see that the
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Fig. 5. Pareto of two-stage amplifier gain.
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Fig. 6. Pareto of two-stage amplifier noise figure.

input matching network’s transmission line length X3 has the
smallest significant effect on the amplifier gain. It can easily be
seen from the Pareto charts that the transmission line length
X1 does not significantly influence any of the responses as
would be expected. Therefore, X; can be totally ignored in
the subsequent analysis and optimization within this volume
of design space.

The Fig. 5 Pareto Chart lets the designer visualize that if
both the Factor X4 and Xg line lengths were increased to
the +1 and +1 factor level settings, then gain of the entire
amplifier will also increase because the X, - Xg coefficient
is positive. If one of the factors was increased while the
other was decreased (that is, one at +1 the other at —1
causing X4 - Xg to be —1) then the amplifier gain would
tend to decrease due to the positive interaction coefficient.
Comparing each of the Pareto charts to each other leads
directly to trade-off conclusions. For example, X4 is shown
to be the only main effect factor that affects all the responses
significantly. Referring to Fig. 6, decreasing the noise figure
(desirable) of circuit in Fig. 2 by making the X4 factor
lower will also decrease gain (undesirable), Si; and Sgs
(desirable). The designer can optimize the amplifier by hand
choosing the designable parameter values which give the most
desirable trade-offs. Once the designer changes the designable
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Fig. 8. Pareto of two-stage amplifier S22.

parameters, the design can be resimulated and the performance
evaluated. Often, this process would have to be iterated until
the design meets the response specifications as shown in the
Fig. 3 SCAD methodology flowchart.

The amplifier in Fig. 2 was optimized by hand using the
Pareto Charts for several different single frequency perfor-
mance goals to show the versatility of the SCAD methodology.
Each of these performance cases are detailed in Table III
along with the coded parameter and performance values. The
first two optimization cases, “minimize noise figure” and
“maximize gain,” used only their respective Pareto Chart
to optimize their response regardless of the expense of the
other circuit responses. The coded values shown in Table IIT
indicate the designer has tremendous flexibility in optimizing
the design using the SCAD methodology. Minimizing or
maximizing a response is aided by the fact that the designer
has an second order equation for a response which can be
easily minimized with respect to a particular variable. Fig. 6
shows an example of this for the amplifier’s noise figure which
is minimized when X7 is set to —0.4 level because both X7
and X7 - X7 factors are significant.

Both “Met All Specifications” and “Good LN Amp” in
Table Il were optimized by looking at all of the response

Pareto charts in order to evaluate the performance trade-offs.
Both cases were obtained only through hand tuning with
only the Pareto charts supplying the needed “roadmap” to
find optimal parameter configurations. “Met Specifications” in
Table I used parameter values which were kept within the
+15% bounds (—1 to +1) that the DoE had. been performed.
However, the “Good LN Amp” case shows that values far
outside this range, such as X, and Xg, may provide useful
optimization points because the general response trends may
continue even when the regression models lose accuracy [13].
Finding optimum parameter points may be helped by ‘using
linear and nonlinear programming techniques for this type
of multiple constrained optimization problem [12]. Taguchi
advocated a “pick the winner” scheme of optimization by
looking for the experimental run that gives most desirable
responses [2]. However, it is not probable that one of the
planned experiments would happen to set the circuit’s des-
ignable parameters at their globally optimum values and this
method should not be normally used for optimization.

IV. VARIABILITY REDUCTION

Perhaps the most exciting application of the SCAD method-
ology is for reduction of circuit response variability. All
circuits that are produced have some inherent variability in
them. Large circuit variation tends to cause high yield losses.
Response variability is due to two types of factors: des-
ignable factor variation and environmental noise. The effect
of designable parameter variation is easily seen by the Pareto
charts. Fig. 8 shows that low noise amplifier .output match is
much more sensitive to the X4 designable parameter than the
X5 factor. Therefore, if the length X4 was to vary a small
percentage while the circuit was being produced, that would
effect the S99 response more than if the length factor X5 were
to vary that same percentage. One can see it is in the designer’s
best interest to reduce the fabrication length variations of the
X, factor more so than the X5 factor’s length variations. A
designer can minimize this propagation of production variation
to the circuit responses by using the DoE approach to identify,
or screen, the most sensitive parameters and focus effort on
controlling their variability [14].

The second type of circuit variability is due to environmen-
tal, or “noise,” variables such as changes in bias voltages,
small signal FET parameters, temperature, or aging. CAD
packages can simulate the effect of these variables. The
variability due to these parameters can then be minimized
by choosing designable parameter settings that cause the
circuit to be least sensitive to these noise variables. Often,

-the designer cannot totally minimize the response variability

without miscentering the design. Taguchi described a method
of achieving this type of robust circuit design through the use
of inner and outer array DoE’s [6]. The inner array is the
designable factor DoE plan such as the one discussed in the
previous section and shown in Table 1. The outer array is a
separate designed experiment using only the noise variables.
When replications are made in actual measurements for a
system’s particular level settings, the response will not be
the same due to measurement error and slightly changing
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Outer Noise Array
Inner Designable Array | -1 -1 +1 +1 0
¥, ¥, -1 +1 -1 +1 8
-1 -1 Y11 Yi2 | Y13 Y14
-1 +1 ¥21 Y2 | Ya3 Y24
+1 -1 ¥31 Yz | Y33 Y34
+1 +1 Y41 Ya2 Y43 Va4

Fig. 9. Inner and outer array DoE ¥, designable (outer array) factor, 6,
noise (inner array) factor, and responses y,;.

environmental conditions. In CAD virtual experiments, re-
running the same level settings always will give the same
response. Therefore, circuit variation must be introduced by
using the outer array experiment set as replications of each
of the designable parameter array’s experiments. Fig. 9 shows
an example of an experiment with two designable factor array
variables (¥;) being replicated with a full factorial array of
two noise factors (@, ). The replications across each row will
force variability of the response variables for each set of
designable factor settings (I',). The variability can be modeled
and then minimized by using the designable parameter factors.

Any number of noise factors can be used in the outer array.
It should be mentioned that the outer array design can be a
fractional factorial because the noise variables are not used as
a predictor in the regression model equations. However, large
numbers of noise factors can create prohibitively large outer
arrays even when highly fractionated factorial designs are
used. In these cases, using random permutations to obtain the
noise array is suggested. This is equivalent to using the Monte
Carlo method to induce variations due to random noise factors
in the design. This approach models the true environmental
noise more accurately than the method of selecting the noise
factor levels. However, to guarantee that the entire noise
parameter space is covered, a large number of Monte Carlo
level combinations must be made [15]. A SCAD methodology
user can use specific noise level settings in order to run fewer
total number of virtual experiment simulations when only a
small number of noise parameters are being studied. Either
approach should give equivalent comparisons of the response
variance.

An example of variance reduction will be performed on
the single stage amplifier shown in Fig. 10. A circuit with a
small number of designable factors was chosen to keep the
number of required simulations low. The environmental noise
factor chosen was the amplifier’s input impedance termination.
The amplifier’s gain will be affected as the terminating input
impedance is changed from the 50 2 source impedance that
was used during the nominal design. It would be desir-
able to make the amplifier performance insensitive to these
variations in the source impedance. DoE provides an easy
way to characterize and then minimize this sensitivity. The
single-stage amplifier was designed using the microwave CAD
simulator Touchstone® with lumped inductors to achieve 50
{2 terminations on both the input and output ports. Afterward,
a Taguchi inner noise array was constructed using the four
inductor values in a Resolution V Box-Behnken DoE. Ta-
ble V shows the inductance values and their high and low

TABLE V
SINGLE STAGE AMPLIFIER NOMINAL DESIGN VALUES AND CODING
Variable | Nominal Value | 8% (High, +1) | -8% (Low, -1)
L1 5.48 nH 5.92 nH 5.04 nH
L2 11.46 nH 12.38 nH 10.54 nH
L3 14.94 nH 16.14 nH 13.75 nH
L4 0.22 nH 0.24 nH 0.20 nH
TABLE VI
INPUT MATCH TERMINATING IMPEDANCES FOR TAGUCHI OUTER ARRAY
Resistance (Coding) Reactance (Coding) Mag(I') Ang(ID)
50 (Nominal,0) 0 (Nominal,0) 0 0
25 (Low,-1) -25 (Low,-1) 0.447 -111.7°
25 (Low,-1) 25 (High,+1) 0.447 111.7°
75 (High,+1) -25 (Low,-1) 0.277 -33.7°
75 (High,+1) 25 (High,+1) 0.277 33.7°
L4
L1
ouTt

IN L3
L2

Fig. 10. Single stage amplifier for variance reduction example.

values set at 8% of nominal values in order to get high
modeling accuracy. The noise factor array consisted in the
termination of the amplifier’s input with the five different
types of impedances shown in Table VI. Touchstone® defines
terminating impedances matches in terms of magnitude and
phase of the termination’s reflection coefficient, with respect
to a characteristic impedance of 50 Q [16]. The terminating
impedances were picked for perfect match and four different
quadrants of the Smith chart. The outer noise array consisted
of placing each termination on the amplifier’s input and
calculating the amplifier’s gain for each experiment level
setting of the inner array.

After the DoE was run, a regression model was used on
the gain variance introduced by the different terminations.
Equation (3) shows the resulting expression for the gain’s
variation (dB) with significance of the coefficients determined
at an o = 0.05 level

G gain = 0.96 + 0.328L, + 0.081L5 + 0.232L3 + 0.024L4
—0.083L1 - L1 — 0.062L1 - Ls + 0.022L1 - L3

The Pareto Chart of the variance equation’s ranked coefficients
is shown in Fig. 11 while a Pareto Chart of the amplifier’s
average gain is in Fig. 12. The regressions models for the gain
and gain variance had an R? of 0.99 and 0.96, respectively. At
the nominal design point (all inductance codings set to zero),
the gain was 16.9 dB with a standard deviation of 0.96 dB.
Equation (3) and the Pareto chart in Fig. 11 show the total
gain variance can be reduced by picking all of the designable
parameters at their coded low (-1) values. The amplifier’s
average gain Pareto Chart in Fig. 12 indicates that picking
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Fig. 11. Single stage amplifier gain variance Pareto Chart accounting for
input termination variability.
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Fig. 12. Single stage amplifier average gain Pareto Chart accounting for
input termination variability.

all of the factors at their low (-1) will also tend to increase
the gain which is a favorable trade-off. With the new all low
designable level settings, the amplifier gain- was 17.4 dB, a
0.5 dB increase, while the standard deviation of the gain with
respect to the noise variables was reduced 58% to 0.41 dB.
This shows that the “by-hand” optimization can both increase
nominal value while decreasing the variance of the circuit gain
in a straightforward manner.

Another noise factor which affects the amplifier response
is active device variations. DoE factors must be orthogonal
so the principal component method was chosen to introduce
physically realizable FET variations into the DoE noise array
[17]. The FET model parameters were varied by changing the
first two principal components in the FET model methodology
which corresponded to 86% of the total variation in the small
signal FET parameters. Picking only some of the principle
compornents enables the outer array to have fewer factors and
require a smaller amount of experimental runs. The same inner
array DoE as the previous variation model was run for this set
of virtual experiments. This resulted in the standard deviation
model (in dB) in the following (4) and illustrated in the Pareto
Chart shown in Fig. 13 for an a = 0.05 level of significance.
The R2 of (4) was 0.99

Ogain = 1.283 + 0.489L; + 0.162L3 + 0.022L4

—0.063Lq - Ly ~ 0.019Ly - L3. “)

The model and Pareto chart indicate that setting all of the
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Fig. 13. Single stage amplifier gain variability Pareto Chart accounting for
intrinsic FET variability.

factors at their coded low level (—1) will reduce the variations
in the circuit’s gain response. Coincidentally, these are the
same results as were shown when the input termination was
used as the noise parameter. Apparently, those settings for
the designable parameters create a circuit robust to a variety
of environmental factor variations. Also, this example shows
that designing a more robust circuit does not always mean
sacrifiecing performance. The principal factor outer array could
have been combined with the input termination array, and
others, to form one standard deviation model for the amplifier
gain but this was not done for example clarity.

V. DISCUSSION OF RESULTS

It can be seen that the SCAD modeling methodology gives
a reasonably straightforward and systematic way to optimize
circuits. There is an effort to integrate these tools directly
into the microwave CAD packages so the experimental design,
response modeling, and Pareto charts do not have to be done
by hand [4], [18]. Currently, these tools use a goal oriented
approach with Taguchi loss functions which is slightly-differ-
ent from the approach discussed here. This dissertation shows
that minimizing variance in microwave circuit responses is a
very exciting area of the SCAD methodology. Robust circuits
can be produced in a straightforward manner through the use
of the new type of variation introduction and quantification.
Other types of responses such as gain ripple, efficiency, or
third-order intercept could be modeled and optimized using
the SCAD modeling methodology. However, these types of
circuit responses are more complex than circuit gain or input
match. Our own research into yield modeling has shown that
yield response surface is too complex to be modeled with
the simple linear regression models advocated in the paper.
Modeling over frequency also seems to be SCAD modeling
issue that needs to be addressed by future research.

DoE response modeling can also be easily combined with
more complex statistical models for predictive circuit response
models in a particular region of parameter space. This ap-
proach is similar to macro-modeling which has been used
to model certain circuits which have slow simulation times
[19], [20]. Macro-modeling with SCAD could be implemented
for circuits requiring harmonic balance simulations or electro-
magnetic field solvers. The required experimental simulations
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could be done overnight when the computer time is not
normally used. The statistical macro-models then could be
used, within some bounds of the parameter values, to achieve
much faster optimization or design tuning of a circuit. This
is especially useful to numerical methods requiring meshing
because the empirical response equations will give results that
can be interpolated in between mesh points.

VI. CONCLUSION

A new methodology has been demonstrated for microwave
circuit design. The approach uses a combination of statistical
experimental design and CAD, called SCAD, and enables a
designer to statistically characterize circuit response in a very
systematic way. Design trade-offs can be quantified with the
simple surface response models from the “virtual" experiments
performed by the CAD package. Variation minimization of a
circuit’s response due to noise parameters inherent in circuits
can be achieved with this type of methodology which enables
a designer to create robust circuits. The SCAD methodology
has been demonstrated on two different amplifier designs each
with varying types of designable parameters and optimization
goals. Different types of designed experiments were used to
show the flexibility of the approach. The introduction of two
types of variation noise parameters that are well suited for
SCAD, circuit terminations and FET principal components,
were also discussed. The SCAD methodology will prove to be
an invaluable design tool for a designer making better, more
robust circuits that exhibit higher yields.
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